Only allow messages about a specific topic.v3.8+
Only allow messages about a specific topic. For example, only allow messages about DevOps.
For a detailed walkthrough, see Use AI Semantic Prompt Guard plugin to govern your LLM traffic.
Prerequisites
-
AI Proxy plugin or AI Proxy Advanced plugin configured with an LLM service.
-
A Redis instance.
-
Port
6379
, or your custom Redis port is open and reachable from Kong Gateway.
Environment variables
-
OPENAI_API_KEY
: Your OpenAI API key -
REDIS_HOST
: The host where your Redis instance runs
Add this section to your declarative configuration file:
_format_version: "3.0"
plugins:
- name: ai-semantic-prompt-guard
config:
embeddings:
auth:
header_name: Authorization
header_value: Bearer ${{ env "DECK_OPENAI_API_KEY" }}
model:
name: text-embedding-3-small
provider: openai
search:
threshold: 0.7
vectordb:
strategy: redis
distance_metric: cosine
threshold: 0.5
dimensions: 1024
redis:
host: ${{ env "DECK_REDIS_HOST" }}
port: 6379
rules:
match_all_conversation_history: true
allow_prompts:
- Network troubleshooting and diagnostics
- Cloud infrastructure management (AWS, Azure, GCP)
- Cybersecurity best practices and incident response
- DevOps workflows and automation
- Programming concepts and language usage
- IT policy and compliance guidance
- Software development lifecycle and CI/CD
- Documentation writing and technical explanation
- System administration and configuration
- Productivity and collaboration tools usage
Make the following request:
curl -i -X POST http://localhost:8001/plugins/ \
--header "Accept: application/json" \
--header "Content-Type: application/json" \
--data '
{
"name": "ai-semantic-prompt-guard",
"config": {
"embeddings": {
"auth": {
"header_name": "Authorization",
"header_value": "Bearer '$OPENAI_API_KEY'"
},
"model": {
"name": "text-embedding-3-small",
"provider": "openai"
}
},
"search": {
"threshold": 0.7
},
"vectordb": {
"strategy": "redis",
"distance_metric": "cosine",
"threshold": 0.5,
"dimensions": 1024,
"redis": {
"host": "'$REDIS_HOST'",
"port": 6379
}
},
"rules": {
"match_all_conversation_history": true,
"allow_prompts": [
"Network troubleshooting and diagnostics",
"Cloud infrastructure management (AWS, Azure, GCP)",
"Cybersecurity best practices and incident response",
"DevOps workflows and automation",
"Programming concepts and language usage",
"IT policy and compliance guidance",
"Software development lifecycle and CI/CD",
"Documentation writing and technical explanation",
"System administration and configuration",
"Productivity and collaboration tools usage"
]
}
}
}
'
Make the following request:
curl -X POST https://{region}.api.konghq.com/v2/control-planes/{controlPlaneId}/core-entities/plugins/ \
--header "accept: application/json" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $KONNECT_TOKEN" \
--data '
{
"name": "ai-semantic-prompt-guard",
"config": {
"embeddings": {
"auth": {
"header_name": "Authorization",
"header_value": "Bearer '$OPENAI_API_KEY'"
},
"model": {
"name": "text-embedding-3-small",
"provider": "openai"
}
},
"search": {
"threshold": 0.7
},
"vectordb": {
"strategy": "redis",
"distance_metric": "cosine",
"threshold": 0.5,
"dimensions": 1024,
"redis": {
"host": "'$REDIS_HOST'",
"port": 6379
}
},
"rules": {
"match_all_conversation_history": true,
"allow_prompts": [
"Network troubleshooting and diagnostics",
"Cloud infrastructure management (AWS, Azure, GCP)",
"Cybersecurity best practices and incident response",
"DevOps workflows and automation",
"Programming concepts and language usage",
"IT policy and compliance guidance",
"Software development lifecycle and CI/CD",
"Documentation writing and technical explanation",
"System administration and configuration",
"Productivity and collaboration tools usage"
]
}
}
}
'
Make sure to replace the following placeholders with your own values:
-
region
: Geographic region where your Kong Konnect is hosted and operates. -
controlPlaneId
: Theid
of the control plane. -
KONNECT_TOKEN
: Your Personal Access Token (PAT) associated with your Konnect account.
See the Konnect API reference to learn about region-specific URLs and personal access tokens.
echo "
apiVersion: configuration.konghq.com/v1
kind: KongClusterPlugin
metadata:
name: ai-semantic-prompt-guard
namespace: kong
annotations:
kubernetes.io/ingress.class: kong
labels:
global: 'true'
config:
embeddings:
auth:
header_name: Authorization
header_value: Bearer $OPENAI_API_KEY
model:
name: text-embedding-3-small
provider: openai
search:
threshold: 0.7
vectordb:
strategy: redis
distance_metric: cosine
threshold: 0.5
dimensions: 1024
redis:
host: '$REDIS_HOST'
port: 6379
rules:
match_all_conversation_history: true
allow_prompts:
- Network troubleshooting and diagnostics
- Cloud infrastructure management (AWS, Azure, GCP)
- Cybersecurity best practices and incident response
- DevOps workflows and automation
- Programming concepts and language usage
- IT policy and compliance guidance
- Software development lifecycle and CI/CD
- Documentation writing and technical explanation
- System administration and configuration
- Productivity and collaboration tools usage
plugin: ai-semantic-prompt-guard
" | kubectl apply -f -
Prerequisite: Configure your Personal Access Token
terraform {
required_providers {
konnect = {
source = "kong/konnect"
}
}
}
provider "konnect" {
personal_access_token = "$KONNECT_TOKEN"
server_url = "https://us.api.konghq.com/"
}
Add the following to your Terraform configuration to create a Konnect Gateway Plugin:
resource "konnect_gateway_plugin_ai_semantic_prompt_guard" "my_ai_semantic_prompt_guard" {
enabled = true
config = {
embeddings = {
auth = {
header_name = "Authorization"
header_value = "Bearer var.openai_api_key"
}
model = {
name = "text-embedding-3-small"
provider = "openai"
}
}
search = {
threshold = 0.7
}
vectordb = {
strategy = "redis"
distance_metric = "cosine"
threshold = 0.5
dimensions = 1024
redis = {
host = var.redis_host
port = 6379
}
}
rules = {
match_all_conversation_history = true
allow_prompts = ["Network troubleshooting and diagnostics", "Cloud infrastructure management (AWS, Azure, GCP)", "Cybersecurity best practices and incident response", "DevOps workflows and automation", "Programming concepts and language usage", "IT policy and compliance guidance", "Software development lifecycle and CI/CD", "Documentation writing and technical explanation", "System administration and configuration", "Productivity and collaboration tools usage"]
}
}
control_plane_id = konnect_gateway_control_plane.my_konnect_cp.id
}
This example requires the following variables to be added to your manifest. You can specify values at runtime by setting TF_VAR_name=value
.
variable "redis_host" {
type = string
}
Add this section to your declarative configuration file:
_format_version: "3.0"
plugins:
- name: ai-semantic-prompt-guard
service: serviceName|Id
config:
embeddings:
auth:
header_name: Authorization
header_value: Bearer ${{ env "DECK_OPENAI_API_KEY" }}
model:
name: text-embedding-3-small
provider: openai
search:
threshold: 0.7
vectordb:
strategy: redis
distance_metric: cosine
threshold: 0.5
dimensions: 1024
redis:
host: ${{ env "DECK_REDIS_HOST" }}
port: 6379
rules:
match_all_conversation_history: true
allow_prompts:
- Network troubleshooting and diagnostics
- Cloud infrastructure management (AWS, Azure, GCP)
- Cybersecurity best practices and incident response
- DevOps workflows and automation
- Programming concepts and language usage
- IT policy and compliance guidance
- Software development lifecycle and CI/CD
- Documentation writing and technical explanation
- System administration and configuration
- Productivity and collaboration tools usage
Make sure to replace the following placeholders with your own values:
-
serviceName|Id
: Theid
orname
of the service the plugin configuration will target.
Make the following request:
curl -i -X POST http://localhost:8001/services/{serviceName|Id}/plugins/ \
--header "Accept: application/json" \
--header "Content-Type: application/json" \
--data '
{
"name": "ai-semantic-prompt-guard",
"config": {
"embeddings": {
"auth": {
"header_name": "Authorization",
"header_value": "Bearer '$OPENAI_API_KEY'"
},
"model": {
"name": "text-embedding-3-small",
"provider": "openai"
}
},
"search": {
"threshold": 0.7
},
"vectordb": {
"strategy": "redis",
"distance_metric": "cosine",
"threshold": 0.5,
"dimensions": 1024,
"redis": {
"host": "'$REDIS_HOST'",
"port": 6379
}
},
"rules": {
"match_all_conversation_history": true,
"allow_prompts": [
"Network troubleshooting and diagnostics",
"Cloud infrastructure management (AWS, Azure, GCP)",
"Cybersecurity best practices and incident response",
"DevOps workflows and automation",
"Programming concepts and language usage",
"IT policy and compliance guidance",
"Software development lifecycle and CI/CD",
"Documentation writing and technical explanation",
"System administration and configuration",
"Productivity and collaboration tools usage"
]
}
}
}
'
Make sure to replace the following placeholders with your own values:
-
serviceName|Id
: Theid
orname
of the service the plugin configuration will target.
Make the following request:
curl -X POST https://{region}.api.konghq.com/v2/control-planes/{controlPlaneId}/core-entities/services/{serviceId}/plugins/ \
--header "accept: application/json" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $KONNECT_TOKEN" \
--data '
{
"name": "ai-semantic-prompt-guard",
"config": {
"embeddings": {
"auth": {
"header_name": "Authorization",
"header_value": "Bearer '$OPENAI_API_KEY'"
},
"model": {
"name": "text-embedding-3-small",
"provider": "openai"
}
},
"search": {
"threshold": 0.7
},
"vectordb": {
"strategy": "redis",
"distance_metric": "cosine",
"threshold": 0.5,
"dimensions": 1024,
"redis": {
"host": "'$REDIS_HOST'",
"port": 6379
}
},
"rules": {
"match_all_conversation_history": true,
"allow_prompts": [
"Network troubleshooting and diagnostics",
"Cloud infrastructure management (AWS, Azure, GCP)",
"Cybersecurity best practices and incident response",
"DevOps workflows and automation",
"Programming concepts and language usage",
"IT policy and compliance guidance",
"Software development lifecycle and CI/CD",
"Documentation writing and technical explanation",
"System administration and configuration",
"Productivity and collaboration tools usage"
]
}
}
}
'
Make sure to replace the following placeholders with your own values:
-
region
: Geographic region where your Kong Konnect is hosted and operates. -
controlPlaneId
: Theid
of the control plane. -
KONNECT_TOKEN
: Your Personal Access Token (PAT) associated with your Konnect account. -
serviceId
: Theid
of the service the plugin configuration will target.
See the Konnect API reference to learn about region-specific URLs and personal access tokens.
echo "
apiVersion: configuration.konghq.com/v1
kind: KongPlugin
metadata:
name: ai-semantic-prompt-guard
namespace: kong
annotations:
kubernetes.io/ingress.class: kong
config:
embeddings:
auth:
header_name: Authorization
header_value: Bearer $OPENAI_API_KEY
model:
name: text-embedding-3-small
provider: openai
search:
threshold: 0.7
vectordb:
strategy: redis
distance_metric: cosine
threshold: 0.5
dimensions: 1024
redis:
host: '$REDIS_HOST'
port: 6379
rules:
match_all_conversation_history: true
allow_prompts:
- Network troubleshooting and diagnostics
- Cloud infrastructure management (AWS, Azure, GCP)
- Cybersecurity best practices and incident response
- DevOps workflows and automation
- Programming concepts and language usage
- IT policy and compliance guidance
- Software development lifecycle and CI/CD
- Documentation writing and technical explanation
- System administration and configuration
- Productivity and collaboration tools usage
plugin: ai-semantic-prompt-guard
" | kubectl apply -f -
Next, apply the KongPlugin
resource by annotating the service
resource:
kubectl annotate -n kong service SERVICE_NAME konghq.com/plugins=ai-semantic-prompt-guard
Prerequisite: Configure your Personal Access Token
terraform {
required_providers {
konnect = {
source = "kong/konnect"
}
}
}
provider "konnect" {
personal_access_token = "$KONNECT_TOKEN"
server_url = "https://us.api.konghq.com/"
}
Add the following to your Terraform configuration to create a Konnect Gateway Plugin:
resource "konnect_gateway_plugin_ai_semantic_prompt_guard" "my_ai_semantic_prompt_guard" {
enabled = true
config = {
embeddings = {
auth = {
header_name = "Authorization"
header_value = "Bearer var.openai_api_key"
}
model = {
name = "text-embedding-3-small"
provider = "openai"
}
}
search = {
threshold = 0.7
}
vectordb = {
strategy = "redis"
distance_metric = "cosine"
threshold = 0.5
dimensions = 1024
redis = {
host = var.redis_host
port = 6379
}
}
rules = {
match_all_conversation_history = true
allow_prompts = ["Network troubleshooting and diagnostics", "Cloud infrastructure management (AWS, Azure, GCP)", "Cybersecurity best practices and incident response", "DevOps workflows and automation", "Programming concepts and language usage", "IT policy and compliance guidance", "Software development lifecycle and CI/CD", "Documentation writing and technical explanation", "System administration and configuration", "Productivity and collaboration tools usage"]
}
}
control_plane_id = konnect_gateway_control_plane.my_konnect_cp.id
service = {
id = konnect_gateway_service.my_service.id
}
}
This example requires the following variables to be added to your manifest. You can specify values at runtime by setting TF_VAR_name=value
.
variable "redis_host" {
type = string
}
Add this section to your declarative configuration file:
_format_version: "3.0"
plugins:
- name: ai-semantic-prompt-guard
route: routeName|Id
config:
embeddings:
auth:
header_name: Authorization
header_value: Bearer ${{ env "DECK_OPENAI_API_KEY" }}
model:
name: text-embedding-3-small
provider: openai
search:
threshold: 0.7
vectordb:
strategy: redis
distance_metric: cosine
threshold: 0.5
dimensions: 1024
redis:
host: ${{ env "DECK_REDIS_HOST" }}
port: 6379
rules:
match_all_conversation_history: true
allow_prompts:
- Network troubleshooting and diagnostics
- Cloud infrastructure management (AWS, Azure, GCP)
- Cybersecurity best practices and incident response
- DevOps workflows and automation
- Programming concepts and language usage
- IT policy and compliance guidance
- Software development lifecycle and CI/CD
- Documentation writing and technical explanation
- System administration and configuration
- Productivity and collaboration tools usage
Make sure to replace the following placeholders with your own values:
-
routeName|Id
: Theid
orname
of the route the plugin configuration will target.
Make the following request:
curl -i -X POST http://localhost:8001/routes/{routeName|Id}/plugins/ \
--header "Accept: application/json" \
--header "Content-Type: application/json" \
--data '
{
"name": "ai-semantic-prompt-guard",
"config": {
"embeddings": {
"auth": {
"header_name": "Authorization",
"header_value": "Bearer '$OPENAI_API_KEY'"
},
"model": {
"name": "text-embedding-3-small",
"provider": "openai"
}
},
"search": {
"threshold": 0.7
},
"vectordb": {
"strategy": "redis",
"distance_metric": "cosine",
"threshold": 0.5,
"dimensions": 1024,
"redis": {
"host": "'$REDIS_HOST'",
"port": 6379
}
},
"rules": {
"match_all_conversation_history": true,
"allow_prompts": [
"Network troubleshooting and diagnostics",
"Cloud infrastructure management (AWS, Azure, GCP)",
"Cybersecurity best practices and incident response",
"DevOps workflows and automation",
"Programming concepts and language usage",
"IT policy and compliance guidance",
"Software development lifecycle and CI/CD",
"Documentation writing and technical explanation",
"System administration and configuration",
"Productivity and collaboration tools usage"
]
}
}
}
'
Make sure to replace the following placeholders with your own values:
-
routeName|Id
: Theid
orname
of the route the plugin configuration will target.
Make the following request:
curl -X POST https://{region}.api.konghq.com/v2/control-planes/{controlPlaneId}/core-entities/routes/{routeId}/plugins/ \
--header "accept: application/json" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $KONNECT_TOKEN" \
--data '
{
"name": "ai-semantic-prompt-guard",
"config": {
"embeddings": {
"auth": {
"header_name": "Authorization",
"header_value": "Bearer '$OPENAI_API_KEY'"
},
"model": {
"name": "text-embedding-3-small",
"provider": "openai"
}
},
"search": {
"threshold": 0.7
},
"vectordb": {
"strategy": "redis",
"distance_metric": "cosine",
"threshold": 0.5,
"dimensions": 1024,
"redis": {
"host": "'$REDIS_HOST'",
"port": 6379
}
},
"rules": {
"match_all_conversation_history": true,
"allow_prompts": [
"Network troubleshooting and diagnostics",
"Cloud infrastructure management (AWS, Azure, GCP)",
"Cybersecurity best practices and incident response",
"DevOps workflows and automation",
"Programming concepts and language usage",
"IT policy and compliance guidance",
"Software development lifecycle and CI/CD",
"Documentation writing and technical explanation",
"System administration and configuration",
"Productivity and collaboration tools usage"
]
}
}
}
'
Make sure to replace the following placeholders with your own values:
-
region
: Geographic region where your Kong Konnect is hosted and operates. -
controlPlaneId
: Theid
of the control plane. -
KONNECT_TOKEN
: Your Personal Access Token (PAT) associated with your Konnect account. -
routeId
: Theid
of the route the plugin configuration will target.
See the Konnect API reference to learn about region-specific URLs and personal access tokens.
echo "
apiVersion: configuration.konghq.com/v1
kind: KongPlugin
metadata:
name: ai-semantic-prompt-guard
namespace: kong
annotations:
kubernetes.io/ingress.class: kong
config:
embeddings:
auth:
header_name: Authorization
header_value: Bearer $OPENAI_API_KEY
model:
name: text-embedding-3-small
provider: openai
search:
threshold: 0.7
vectordb:
strategy: redis
distance_metric: cosine
threshold: 0.5
dimensions: 1024
redis:
host: '$REDIS_HOST'
port: 6379
rules:
match_all_conversation_history: true
allow_prompts:
- Network troubleshooting and diagnostics
- Cloud infrastructure management (AWS, Azure, GCP)
- Cybersecurity best practices and incident response
- DevOps workflows and automation
- Programming concepts and language usage
- IT policy and compliance guidance
- Software development lifecycle and CI/CD
- Documentation writing and technical explanation
- System administration and configuration
- Productivity and collaboration tools usage
plugin: ai-semantic-prompt-guard
" | kubectl apply -f -
Next, apply the KongPlugin
resource by annotating the httproute
or ingress
resource:
kubectl annotate -n kong httproute konghq.com/plugins=ai-semantic-prompt-guard
kubectl annotate -n kong ingress konghq.com/plugins=ai-semantic-prompt-guard
Prerequisite: Configure your Personal Access Token
terraform {
required_providers {
konnect = {
source = "kong/konnect"
}
}
}
provider "konnect" {
personal_access_token = "$KONNECT_TOKEN"
server_url = "https://us.api.konghq.com/"
}
Add the following to your Terraform configuration to create a Konnect Gateway Plugin:
resource "konnect_gateway_plugin_ai_semantic_prompt_guard" "my_ai_semantic_prompt_guard" {
enabled = true
config = {
embeddings = {
auth = {
header_name = "Authorization"
header_value = "Bearer var.openai_api_key"
}
model = {
name = "text-embedding-3-small"
provider = "openai"
}
}
search = {
threshold = 0.7
}
vectordb = {
strategy = "redis"
distance_metric = "cosine"
threshold = 0.5
dimensions = 1024
redis = {
host = var.redis_host
port = 6379
}
}
rules = {
match_all_conversation_history = true
allow_prompts = ["Network troubleshooting and diagnostics", "Cloud infrastructure management (AWS, Azure, GCP)", "Cybersecurity best practices and incident response", "DevOps workflows and automation", "Programming concepts and language usage", "IT policy and compliance guidance", "Software development lifecycle and CI/CD", "Documentation writing and technical explanation", "System administration and configuration", "Productivity and collaboration tools usage"]
}
}
control_plane_id = konnect_gateway_control_plane.my_konnect_cp.id
route = {
id = konnect_gateway_route.my_route.id
}
}
This example requires the following variables to be added to your manifest. You can specify values at runtime by setting TF_VAR_name=value
.
variable "redis_host" {
type = string
}
Add this section to your declarative configuration file:
_format_version: "3.0"
plugins:
- name: ai-semantic-prompt-guard
consumer: consumerName|Id
config:
embeddings:
auth:
header_name: Authorization
header_value: Bearer ${{ env "DECK_OPENAI_API_KEY" }}
model:
name: text-embedding-3-small
provider: openai
search:
threshold: 0.7
vectordb:
strategy: redis
distance_metric: cosine
threshold: 0.5
dimensions: 1024
redis:
host: ${{ env "DECK_REDIS_HOST" }}
port: 6379
rules:
match_all_conversation_history: true
allow_prompts:
- Network troubleshooting and diagnostics
- Cloud infrastructure management (AWS, Azure, GCP)
- Cybersecurity best practices and incident response
- DevOps workflows and automation
- Programming concepts and language usage
- IT policy and compliance guidance
- Software development lifecycle and CI/CD
- Documentation writing and technical explanation
- System administration and configuration
- Productivity and collaboration tools usage
Make sure to replace the following placeholders with your own values:
-
consumerName|Id
: Theid
orname
of the consumer the plugin configuration will target.
Make the following request:
curl -i -X POST http://localhost:8001/consumers/{consumerName|Id}/plugins/ \
--header "Accept: application/json" \
--header "Content-Type: application/json" \
--data '
{
"name": "ai-semantic-prompt-guard",
"config": {
"embeddings": {
"auth": {
"header_name": "Authorization",
"header_value": "Bearer '$OPENAI_API_KEY'"
},
"model": {
"name": "text-embedding-3-small",
"provider": "openai"
}
},
"search": {
"threshold": 0.7
},
"vectordb": {
"strategy": "redis",
"distance_metric": "cosine",
"threshold": 0.5,
"dimensions": 1024,
"redis": {
"host": "'$REDIS_HOST'",
"port": 6379
}
},
"rules": {
"match_all_conversation_history": true,
"allow_prompts": [
"Network troubleshooting and diagnostics",
"Cloud infrastructure management (AWS, Azure, GCP)",
"Cybersecurity best practices and incident response",
"DevOps workflows and automation",
"Programming concepts and language usage",
"IT policy and compliance guidance",
"Software development lifecycle and CI/CD",
"Documentation writing and technical explanation",
"System administration and configuration",
"Productivity and collaboration tools usage"
]
}
}
}
'
Make sure to replace the following placeholders with your own values:
-
consumerName|Id
: Theid
orname
of the consumer the plugin configuration will target.
Make the following request:
curl -X POST https://{region}.api.konghq.com/v2/control-planes/{controlPlaneId}/core-entities/consumers/{consumerId}/plugins/ \
--header "accept: application/json" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $KONNECT_TOKEN" \
--data '
{
"name": "ai-semantic-prompt-guard",
"config": {
"embeddings": {
"auth": {
"header_name": "Authorization",
"header_value": "Bearer '$OPENAI_API_KEY'"
},
"model": {
"name": "text-embedding-3-small",
"provider": "openai"
}
},
"search": {
"threshold": 0.7
},
"vectordb": {
"strategy": "redis",
"distance_metric": "cosine",
"threshold": 0.5,
"dimensions": 1024,
"redis": {
"host": "'$REDIS_HOST'",
"port": 6379
}
},
"rules": {
"match_all_conversation_history": true,
"allow_prompts": [
"Network troubleshooting and diagnostics",
"Cloud infrastructure management (AWS, Azure, GCP)",
"Cybersecurity best practices and incident response",
"DevOps workflows and automation",
"Programming concepts and language usage",
"IT policy and compliance guidance",
"Software development lifecycle and CI/CD",
"Documentation writing and technical explanation",
"System administration and configuration",
"Productivity and collaboration tools usage"
]
}
}
}
'
Make sure to replace the following placeholders with your own values:
-
region
: Geographic region where your Kong Konnect is hosted and operates. -
controlPlaneId
: Theid
of the control plane. -
KONNECT_TOKEN
: Your Personal Access Token (PAT) associated with your Konnect account. -
consumerId
: Theid
of the consumer the plugin configuration will target.
See the Konnect API reference to learn about region-specific URLs and personal access tokens.
echo "
apiVersion: configuration.konghq.com/v1
kind: KongPlugin
metadata:
name: ai-semantic-prompt-guard
namespace: kong
annotations:
kubernetes.io/ingress.class: kong
config:
embeddings:
auth:
header_name: Authorization
header_value: Bearer $OPENAI_API_KEY
model:
name: text-embedding-3-small
provider: openai
search:
threshold: 0.7
vectordb:
strategy: redis
distance_metric: cosine
threshold: 0.5
dimensions: 1024
redis:
host: '$REDIS_HOST'
port: 6379
rules:
match_all_conversation_history: true
allow_prompts:
- Network troubleshooting and diagnostics
- Cloud infrastructure management (AWS, Azure, GCP)
- Cybersecurity best practices and incident response
- DevOps workflows and automation
- Programming concepts and language usage
- IT policy and compliance guidance
- Software development lifecycle and CI/CD
- Documentation writing and technical explanation
- System administration and configuration
- Productivity and collaboration tools usage
plugin: ai-semantic-prompt-guard
" | kubectl apply -f -
Next, apply the KongPlugin
resource by annotating the KongConsumer
resource:
kubectl annotate -n kong CONSUMER_NAME konghq.com/plugins=ai-semantic-prompt-guard
Prerequisite: Configure your Personal Access Token
terraform {
required_providers {
konnect = {
source = "kong/konnect"
}
}
}
provider "konnect" {
personal_access_token = "$KONNECT_TOKEN"
server_url = "https://us.api.konghq.com/"
}
Add the following to your Terraform configuration to create a Konnect Gateway Plugin:
resource "konnect_gateway_plugin_ai_semantic_prompt_guard" "my_ai_semantic_prompt_guard" {
enabled = true
config = {
embeddings = {
auth = {
header_name = "Authorization"
header_value = "Bearer var.openai_api_key"
}
model = {
name = "text-embedding-3-small"
provider = "openai"
}
}
search = {
threshold = 0.7
}
vectordb = {
strategy = "redis"
distance_metric = "cosine"
threshold = 0.5
dimensions = 1024
redis = {
host = var.redis_host
port = 6379
}
}
rules = {
match_all_conversation_history = true
allow_prompts = ["Network troubleshooting and diagnostics", "Cloud infrastructure management (AWS, Azure, GCP)", "Cybersecurity best practices and incident response", "DevOps workflows and automation", "Programming concepts and language usage", "IT policy and compliance guidance", "Software development lifecycle and CI/CD", "Documentation writing and technical explanation", "System administration and configuration", "Productivity and collaboration tools usage"]
}
}
control_plane_id = konnect_gateway_control_plane.my_konnect_cp.id
consumer = {
id = konnect_gateway_consumer.my_consumer.id
}
}
This example requires the following variables to be added to your manifest. You can specify values at runtime by setting TF_VAR_name=value
.
variable "redis_host" {
type = string
}
Add this section to your declarative configuration file:
_format_version: "3.0"
plugins:
- name: ai-semantic-prompt-guard
consumer_group: consumerGroupName|Id
config:
embeddings:
auth:
header_name: Authorization
header_value: Bearer ${{ env "DECK_OPENAI_API_KEY" }}
model:
name: text-embedding-3-small
provider: openai
search:
threshold: 0.7
vectordb:
strategy: redis
distance_metric: cosine
threshold: 0.5
dimensions: 1024
redis:
host: ${{ env "DECK_REDIS_HOST" }}
port: 6379
rules:
match_all_conversation_history: true
allow_prompts:
- Network troubleshooting and diagnostics
- Cloud infrastructure management (AWS, Azure, GCP)
- Cybersecurity best practices and incident response
- DevOps workflows and automation
- Programming concepts and language usage
- IT policy and compliance guidance
- Software development lifecycle and CI/CD
- Documentation writing and technical explanation
- System administration and configuration
- Productivity and collaboration tools usage
Make sure to replace the following placeholders with your own values:
-
consumerGroupName|Id
: Theid
orname
of the consumer group the plugin configuration will target.
Make the following request:
curl -i -X POST http://localhost:8001/consumer_groups/{consumerGroupName|Id}/plugins/ \
--header "Accept: application/json" \
--header "Content-Type: application/json" \
--data '
{
"name": "ai-semantic-prompt-guard",
"config": {
"embeddings": {
"auth": {
"header_name": "Authorization",
"header_value": "Bearer '$OPENAI_API_KEY'"
},
"model": {
"name": "text-embedding-3-small",
"provider": "openai"
}
},
"search": {
"threshold": 0.7
},
"vectordb": {
"strategy": "redis",
"distance_metric": "cosine",
"threshold": 0.5,
"dimensions": 1024,
"redis": {
"host": "'$REDIS_HOST'",
"port": 6379
}
},
"rules": {
"match_all_conversation_history": true,
"allow_prompts": [
"Network troubleshooting and diagnostics",
"Cloud infrastructure management (AWS, Azure, GCP)",
"Cybersecurity best practices and incident response",
"DevOps workflows and automation",
"Programming concepts and language usage",
"IT policy and compliance guidance",
"Software development lifecycle and CI/CD",
"Documentation writing and technical explanation",
"System administration and configuration",
"Productivity and collaboration tools usage"
]
}
}
}
'
Make sure to replace the following placeholders with your own values:
-
consumerGroupName|Id
: Theid
orname
of the consumer group the plugin configuration will target.
Make the following request:
curl -X POST https://{region}.api.konghq.com/v2/control-planes/{controlPlaneId}/core-entities/consumer_groups/{consumerGroupId}/plugins/ \
--header "accept: application/json" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer $KONNECT_TOKEN" \
--data '
{
"name": "ai-semantic-prompt-guard",
"config": {
"embeddings": {
"auth": {
"header_name": "Authorization",
"header_value": "Bearer '$OPENAI_API_KEY'"
},
"model": {
"name": "text-embedding-3-small",
"provider": "openai"
}
},
"search": {
"threshold": 0.7
},
"vectordb": {
"strategy": "redis",
"distance_metric": "cosine",
"threshold": 0.5,
"dimensions": 1024,
"redis": {
"host": "'$REDIS_HOST'",
"port": 6379
}
},
"rules": {
"match_all_conversation_history": true,
"allow_prompts": [
"Network troubleshooting and diagnostics",
"Cloud infrastructure management (AWS, Azure, GCP)",
"Cybersecurity best practices and incident response",
"DevOps workflows and automation",
"Programming concepts and language usage",
"IT policy and compliance guidance",
"Software development lifecycle and CI/CD",
"Documentation writing and technical explanation",
"System administration and configuration",
"Productivity and collaboration tools usage"
]
}
}
}
'
Make sure to replace the following placeholders with your own values:
-
region
: Geographic region where your Kong Konnect is hosted and operates. -
controlPlaneId
: Theid
of the control plane. -
KONNECT_TOKEN
: Your Personal Access Token (PAT) associated with your Konnect account. -
consumerGroupId
: Theid
of the consumer group the plugin configuration will target.
See the Konnect API reference to learn about region-specific URLs and personal access tokens.
echo "
apiVersion: configuration.konghq.com/v1
kind: KongPlugin
metadata:
name: ai-semantic-prompt-guard
namespace: kong
annotations:
kubernetes.io/ingress.class: kong
config:
embeddings:
auth:
header_name: Authorization
header_value: Bearer $OPENAI_API_KEY
model:
name: text-embedding-3-small
provider: openai
search:
threshold: 0.7
vectordb:
strategy: redis
distance_metric: cosine
threshold: 0.5
dimensions: 1024
redis:
host: '$REDIS_HOST'
port: 6379
rules:
match_all_conversation_history: true
allow_prompts:
- Network troubleshooting and diagnostics
- Cloud infrastructure management (AWS, Azure, GCP)
- Cybersecurity best practices and incident response
- DevOps workflows and automation
- Programming concepts and language usage
- IT policy and compliance guidance
- Software development lifecycle and CI/CD
- Documentation writing and technical explanation
- System administration and configuration
- Productivity and collaboration tools usage
plugin: ai-semantic-prompt-guard
" | kubectl apply -f -
Next, apply the KongPlugin
resource by annotating the KongConsumerGroup
resource:
kubectl annotate -n kong CONSUMERGROUP_NAME konghq.com/plugins=ai-semantic-prompt-guard
Prerequisite: Configure your Personal Access Token
terraform {
required_providers {
konnect = {
source = "kong/konnect"
}
}
}
provider "konnect" {
personal_access_token = "$KONNECT_TOKEN"
server_url = "https://us.api.konghq.com/"
}
Add the following to your Terraform configuration to create a Konnect Gateway Plugin:
resource "konnect_gateway_plugin_ai_semantic_prompt_guard" "my_ai_semantic_prompt_guard" {
enabled = true
config = {
embeddings = {
auth = {
header_name = "Authorization"
header_value = "Bearer var.openai_api_key"
}
model = {
name = "text-embedding-3-small"
provider = "openai"
}
}
search = {
threshold = 0.7
}
vectordb = {
strategy = "redis"
distance_metric = "cosine"
threshold = 0.5
dimensions = 1024
redis = {
host = var.redis_host
port = 6379
}
}
rules = {
match_all_conversation_history = true
allow_prompts = ["Network troubleshooting and diagnostics", "Cloud infrastructure management (AWS, Azure, GCP)", "Cybersecurity best practices and incident response", "DevOps workflows and automation", "Programming concepts and language usage", "IT policy and compliance guidance", "Software development lifecycle and CI/CD", "Documentation writing and technical explanation", "System administration and configuration", "Productivity and collaboration tools usage"]
}
}
control_plane_id = konnect_gateway_control_plane.my_konnect_cp.id
consumer_group = {
id = konnect_gateway_consumer_group.my_consumer_group.id
}
}
This example requires the following variables to be added to your manifest. You can specify values at runtime by setting TF_VAR_name=value
.
variable "redis_host" {
type = string
}