RAG injection with OpenAI and Redisv3.10+
Configure the AI RAG Injector plugin to inject content to use Redis as vector database and the OpenAI text-embedding-3-large model for embedding.
If you use the
text-embedding-ada-002as an embedding model, you must set a fixed dimension of1536, as required by the official model specification. Alternatively, use thetext-embedding-3-smallmodel, which supports dynamic dimensions and works without specifying a fixed value.
Prerequisites
- 
    You have enabled the AI Proxy or AI Proxy Advanced plugin 
- 
    You have an OpenAI account 
- 
    A Redis instance. 
- 
    Port 6379, or your custom Redis port is open and reachable from Kong Gateway.
Environment variables
- 
    OPENAI_API_KEY: The API key to use to connect to OpenAI.
- 
    REDIS_HOST: The Redis server’s host
Add this section to your kong.yaml configuration file:
_format_version: "3.0"
plugins:
  - name: ai-rag-injector
    config:
      inject_template: |
        Only use the following information surrounded by <RAG></RAG>to and your existing knowledge to provide the best possible answer to the user.
        <RAG><CONTEXT></RAG>
        User's question: <PROMPT>
      embeddings:
        auth:
          header_name: Authorization
          header_value: Bearer ${{ env "DECK_OPENAI_API_KEY" }}
        model:
          provider: openai
          name: text-embedding-3-large
      vectordb:
        strategy: redis
        redis:
          host: ${{ env "DECK_REDIS_HOST" }}
          port: 6379
        distance_metric: cosine
        dimensions: 76
Make the following request:
curl -i -X POST http://localhost:8001/plugins/ \
    --header "Accept: application/json" \
    --header "Content-Type: application/json" \
    --data '
    {
      "name": "ai-rag-injector",
      "config": {
        "inject_template": "Only use the following information surrounded by <RAG></RAG>to and your existing knowledge to provide the best possible answer to the user.\n<RAG><CONTEXT></RAG>\nUser's question: <PROMPT>\n",
        "embeddings": {
          "auth": {
            "header_name": "Authorization",
            "header_value": "Bearer '$OPENAI_API_KEY'"
          },
          "model": {
            "provider": "openai",
            "name": "text-embedding-3-large"
          }
        },
        "vectordb": {
          "strategy": "redis",
          "redis": {
            "host": "'$REDIS_HOST'",
            "port": 6379
          },
          "distance_metric": "cosine",
          "dimensions": 76
        }
      },
      "tags": []
    }
    '
Make the following request:
curl -X POST https://{region}.api.konghq.com/v2/control-planes/{controlPlaneId}/core-entities/plugins/ \
    --header "accept: application/json" \
    --header "Content-Type: application/json" \
    --header "Authorization: Bearer $KONNECT_TOKEN" \
    --data '
    {
      "name": "ai-rag-injector",
      "config": {
        "inject_template": "Only use the following information surrounded by <RAG></RAG>to and your existing knowledge to provide the best possible answer to the user.\n<RAG><CONTEXT></RAG>\nUser's question: <PROMPT>\n",
        "embeddings": {
          "auth": {
            "header_name": "Authorization",
            "header_value": "Bearer '$OPENAI_API_KEY'"
          },
          "model": {
            "provider": "openai",
            "name": "text-embedding-3-large"
          }
        },
        "vectordb": {
          "strategy": "redis",
          "redis": {
            "host": "'$REDIS_HOST'",
            "port": 6379
          },
          "distance_metric": "cosine",
          "dimensions": 76
        }
      },
      "tags": []
    }
    '
Make sure to replace the following placeholders with your own values:
- 
    region: Geographic region where your Kong Konnect is hosted and operates.
- 
    controlPlaneId: Theidof the control plane.
- 
    KONNECT_TOKEN: Your Personal Access Token (PAT) associated with your Konnect account.
See the Konnect API reference to learn about region-specific URLs and personal access tokens.
echo "
apiVersion: configuration.konghq.com/v1
kind: KongClusterPlugin
metadata:
  name: ai-rag-injector
  namespace: kong
  annotations:
    kubernetes.io/ingress.class: kong
    konghq.com/tags: ''
  labels:
    global: 'true'
config:
  inject_template: |
    Only use the following information surrounded by <RAG></RAG>to and your existing knowledge to provide the best possible answer to the user.
    <RAG><CONTEXT></RAG>
    User's question: <PROMPT>
  embeddings:
    auth:
      header_name: Authorization
      header_value: Bearer $OPENAI_API_KEY
    model:
      provider: openai
      name: text-embedding-3-large
  vectordb:
    strategy: redis
    redis:
      host: '$REDIS_HOST'
      port: 6379
    distance_metric: cosine
    dimensions: 76
plugin: ai-rag-injector
" | kubectl apply -f -
Prerequisite: Configure your Personal Access Token
terraform {
  required_providers {
    konnect = {
      source  = "kong/konnect"
    }
  }
}
provider "konnect" {
  personal_access_token = "$KONNECT_TOKEN"
  server_url            = "https://us.api.konghq.com/"
}
Add the following to your Terraform configuration to create a Konnect Gateway Plugin:
resource "konnect_gateway_plugin_ai_rag_injector" "my_ai_rag_injector" {
  enabled = true
  config = {
    inject_template = <<EOF
Only use the following information surrounded by <RAG></RAG>to and your existing knowledge to provide the best possible answer to the user.
<RAG><CONTEXT></RAG>
User's question: <PROMPT>
EOF
    embeddings = {
      auth = {
        header_name = "Authorization"
        header_value = "Bearer var.openai_api_key"
      }
      model = {
        provider = "openai"
        name = "text-embedding-3-large"
      }
    }
    vectordb = {
      strategy = "redis"
      redis = {
        host = var.redis_host
        port = 6379
      }
      distance_metric = "cosine"
      dimensions = 76
    }
  }
  tags = []
  control_plane_id = konnect_gateway_control_plane.my_konnect_cp.id
}
This example requires the following variables to be added to your manifest. You can specify values at runtime by setting TF_VAR_name=value.
variable "redis_host" {
  type = string
}
Add this section to your kong.yaml configuration file:
_format_version: "3.0"
plugins:
  - name: ai-rag-injector
    service: serviceName|Id
    config:
      inject_template: |
        Only use the following information surrounded by <RAG></RAG>to and your existing knowledge to provide the best possible answer to the user.
        <RAG><CONTEXT></RAG>
        User's question: <PROMPT>
      embeddings:
        auth:
          header_name: Authorization
          header_value: Bearer ${{ env "DECK_OPENAI_API_KEY" }}
        model:
          provider: openai
          name: text-embedding-3-large
      vectordb:
        strategy: redis
        redis:
          host: ${{ env "DECK_REDIS_HOST" }}
          port: 6379
        distance_metric: cosine
        dimensions: 76
Make sure to replace the following placeholders with your own values:
- 
serviceName|Id: Theidornameof the service the plugin configuration will target.
Make the following request:
curl -i -X POST http://localhost:8001/services/{serviceName|Id}/plugins/ \
    --header "Accept: application/json" \
    --header "Content-Type: application/json" \
    --data '
    {
      "name": "ai-rag-injector",
      "config": {
        "inject_template": "Only use the following information surrounded by <RAG></RAG>to and your existing knowledge to provide the best possible answer to the user.\n<RAG><CONTEXT></RAG>\nUser's question: <PROMPT>\n",
        "embeddings": {
          "auth": {
            "header_name": "Authorization",
            "header_value": "Bearer '$OPENAI_API_KEY'"
          },
          "model": {
            "provider": "openai",
            "name": "text-embedding-3-large"
          }
        },
        "vectordb": {
          "strategy": "redis",
          "redis": {
            "host": "'$REDIS_HOST'",
            "port": 6379
          },
          "distance_metric": "cosine",
          "dimensions": 76
        }
      },
      "tags": []
    }
    '
Make sure to replace the following placeholders with your own values:
- 
serviceName|Id: Theidornameof the service the plugin configuration will target.
Make the following request:
curl -X POST https://{region}.api.konghq.com/v2/control-planes/{controlPlaneId}/core-entities/services/{serviceId}/plugins/ \
    --header "accept: application/json" \
    --header "Content-Type: application/json" \
    --header "Authorization: Bearer $KONNECT_TOKEN" \
    --data '
    {
      "name": "ai-rag-injector",
      "config": {
        "inject_template": "Only use the following information surrounded by <RAG></RAG>to and your existing knowledge to provide the best possible answer to the user.\n<RAG><CONTEXT></RAG>\nUser's question: <PROMPT>\n",
        "embeddings": {
          "auth": {
            "header_name": "Authorization",
            "header_value": "Bearer '$OPENAI_API_KEY'"
          },
          "model": {
            "provider": "openai",
            "name": "text-embedding-3-large"
          }
        },
        "vectordb": {
          "strategy": "redis",
          "redis": {
            "host": "'$REDIS_HOST'",
            "port": 6379
          },
          "distance_metric": "cosine",
          "dimensions": 76
        }
      },
      "tags": []
    }
    '
Make sure to replace the following placeholders with your own values:
- 
    region: Geographic region where your Kong Konnect is hosted and operates.
- 
    controlPlaneId: Theidof the control plane.
- 
    KONNECT_TOKEN: Your Personal Access Token (PAT) associated with your Konnect account.
- 
    serviceId: Theidof the service the plugin configuration will target.
See the Konnect API reference to learn about region-specific URLs and personal access tokens.
echo "
apiVersion: configuration.konghq.com/v1
kind: KongPlugin
metadata:
  name: ai-rag-injector
  namespace: kong
  annotations:
    kubernetes.io/ingress.class: kong
    konghq.com/tags: ''
config:
  inject_template: |
    Only use the following information surrounded by <RAG></RAG>to and your existing knowledge to provide the best possible answer to the user.
    <RAG><CONTEXT></RAG>
    User's question: <PROMPT>
  embeddings:
    auth:
      header_name: Authorization
      header_value: Bearer $OPENAI_API_KEY
    model:
      provider: openai
      name: text-embedding-3-large
  vectordb:
    strategy: redis
    redis:
      host: '$REDIS_HOST'
      port: 6379
    distance_metric: cosine
    dimensions: 76
plugin: ai-rag-injector
" | kubectl apply -f -
Next, apply the KongPlugin resource by annotating the service resource:
kubectl annotate -n kong service SERVICE_NAME konghq.com/plugins=ai-rag-injector
Prerequisite: Configure your Personal Access Token
terraform {
  required_providers {
    konnect = {
      source  = "kong/konnect"
    }
  }
}
provider "konnect" {
  personal_access_token = "$KONNECT_TOKEN"
  server_url            = "https://us.api.konghq.com/"
}
Add the following to your Terraform configuration to create a Konnect Gateway Plugin:
resource "konnect_gateway_plugin_ai_rag_injector" "my_ai_rag_injector" {
  enabled = true
  config = {
    inject_template = <<EOF
Only use the following information surrounded by <RAG></RAG>to and your existing knowledge to provide the best possible answer to the user.
<RAG><CONTEXT></RAG>
User's question: <PROMPT>
EOF
    embeddings = {
      auth = {
        header_name = "Authorization"
        header_value = "Bearer var.openai_api_key"
      }
      model = {
        provider = "openai"
        name = "text-embedding-3-large"
      }
    }
    vectordb = {
      strategy = "redis"
      redis = {
        host = var.redis_host
        port = 6379
      }
      distance_metric = "cosine"
      dimensions = 76
    }
  }
  tags = []
  control_plane_id = konnect_gateway_control_plane.my_konnect_cp.id
  service = {
    id = konnect_gateway_service.my_service.id
  }
}
This example requires the following variables to be added to your manifest. You can specify values at runtime by setting TF_VAR_name=value.
variable "redis_host" {
  type = string
}
Add this section to your kong.yaml configuration file:
_format_version: "3.0"
plugins:
  - name: ai-rag-injector
    route: routeName|Id
    config:
      inject_template: |
        Only use the following information surrounded by <RAG></RAG>to and your existing knowledge to provide the best possible answer to the user.
        <RAG><CONTEXT></RAG>
        User's question: <PROMPT>
      embeddings:
        auth:
          header_name: Authorization
          header_value: Bearer ${{ env "DECK_OPENAI_API_KEY" }}
        model:
          provider: openai
          name: text-embedding-3-large
      vectordb:
        strategy: redis
        redis:
          host: ${{ env "DECK_REDIS_HOST" }}
          port: 6379
        distance_metric: cosine
        dimensions: 76
Make sure to replace the following placeholders with your own values:
- 
routeName|Id: Theidornameof the route the plugin configuration will target.
Make the following request:
curl -i -X POST http://localhost:8001/routes/{routeName|Id}/plugins/ \
    --header "Accept: application/json" \
    --header "Content-Type: application/json" \
    --data '
    {
      "name": "ai-rag-injector",
      "config": {
        "inject_template": "Only use the following information surrounded by <RAG></RAG>to and your existing knowledge to provide the best possible answer to the user.\n<RAG><CONTEXT></RAG>\nUser's question: <PROMPT>\n",
        "embeddings": {
          "auth": {
            "header_name": "Authorization",
            "header_value": "Bearer '$OPENAI_API_KEY'"
          },
          "model": {
            "provider": "openai",
            "name": "text-embedding-3-large"
          }
        },
        "vectordb": {
          "strategy": "redis",
          "redis": {
            "host": "'$REDIS_HOST'",
            "port": 6379
          },
          "distance_metric": "cosine",
          "dimensions": 76
        }
      },
      "tags": []
    }
    '
Make sure to replace the following placeholders with your own values:
- 
routeName|Id: Theidornameof the route the plugin configuration will target.
Make the following request:
curl -X POST https://{region}.api.konghq.com/v2/control-planes/{controlPlaneId}/core-entities/routes/{routeId}/plugins/ \
    --header "accept: application/json" \
    --header "Content-Type: application/json" \
    --header "Authorization: Bearer $KONNECT_TOKEN" \
    --data '
    {
      "name": "ai-rag-injector",
      "config": {
        "inject_template": "Only use the following information surrounded by <RAG></RAG>to and your existing knowledge to provide the best possible answer to the user.\n<RAG><CONTEXT></RAG>\nUser's question: <PROMPT>\n",
        "embeddings": {
          "auth": {
            "header_name": "Authorization",
            "header_value": "Bearer '$OPENAI_API_KEY'"
          },
          "model": {
            "provider": "openai",
            "name": "text-embedding-3-large"
          }
        },
        "vectordb": {
          "strategy": "redis",
          "redis": {
            "host": "'$REDIS_HOST'",
            "port": 6379
          },
          "distance_metric": "cosine",
          "dimensions": 76
        }
      },
      "tags": []
    }
    '
Make sure to replace the following placeholders with your own values:
- 
    region: Geographic region where your Kong Konnect is hosted and operates.
- 
    controlPlaneId: Theidof the control plane.
- 
    KONNECT_TOKEN: Your Personal Access Token (PAT) associated with your Konnect account.
- 
    routeId: Theidof the route the plugin configuration will target.
See the Konnect API reference to learn about region-specific URLs and personal access tokens.
echo "
apiVersion: configuration.konghq.com/v1
kind: KongPlugin
metadata:
  name: ai-rag-injector
  namespace: kong
  annotations:
    kubernetes.io/ingress.class: kong
    konghq.com/tags: ''
config:
  inject_template: |
    Only use the following information surrounded by <RAG></RAG>to and your existing knowledge to provide the best possible answer to the user.
    <RAG><CONTEXT></RAG>
    User's question: <PROMPT>
  embeddings:
    auth:
      header_name: Authorization
      header_value: Bearer $OPENAI_API_KEY
    model:
      provider: openai
      name: text-embedding-3-large
  vectordb:
    strategy: redis
    redis:
      host: '$REDIS_HOST'
      port: 6379
    distance_metric: cosine
    dimensions: 76
plugin: ai-rag-injector
" | kubectl apply -f -
Next, apply the KongPlugin resource by annotating the httproute or ingress resource:
kubectl annotate -n kong httproute  konghq.com/plugins=ai-rag-injector
kubectl annotate -n kong ingress  konghq.com/plugins=ai-rag-injector
Prerequisite: Configure your Personal Access Token
terraform {
  required_providers {
    konnect = {
      source  = "kong/konnect"
    }
  }
}
provider "konnect" {
  personal_access_token = "$KONNECT_TOKEN"
  server_url            = "https://us.api.konghq.com/"
}
Add the following to your Terraform configuration to create a Konnect Gateway Plugin:
resource "konnect_gateway_plugin_ai_rag_injector" "my_ai_rag_injector" {
  enabled = true
  config = {
    inject_template = <<EOF
Only use the following information surrounded by <RAG></RAG>to and your existing knowledge to provide the best possible answer to the user.
<RAG><CONTEXT></RAG>
User's question: <PROMPT>
EOF
    embeddings = {
      auth = {
        header_name = "Authorization"
        header_value = "Bearer var.openai_api_key"
      }
      model = {
        provider = "openai"
        name = "text-embedding-3-large"
      }
    }
    vectordb = {
      strategy = "redis"
      redis = {
        host = var.redis_host
        port = 6379
      }
      distance_metric = "cosine"
      dimensions = 76
    }
  }
  tags = []
  control_plane_id = konnect_gateway_control_plane.my_konnect_cp.id
  route = {
    id = konnect_gateway_route.my_route.id
  }
}
This example requires the following variables to be added to your manifest. You can specify values at runtime by setting TF_VAR_name=value.
variable "redis_host" {
  type = string
}
Add this section to your kong.yaml configuration file:
_format_version: "3.0"
plugins:
  - name: ai-rag-injector
    consumer: consumerName|Id
    config:
      inject_template: |
        Only use the following information surrounded by <RAG></RAG>to and your existing knowledge to provide the best possible answer to the user.
        <RAG><CONTEXT></RAG>
        User's question: <PROMPT>
      embeddings:
        auth:
          header_name: Authorization
          header_value: Bearer ${{ env "DECK_OPENAI_API_KEY" }}
        model:
          provider: openai
          name: text-embedding-3-large
      vectordb:
        strategy: redis
        redis:
          host: ${{ env "DECK_REDIS_HOST" }}
          port: 6379
        distance_metric: cosine
        dimensions: 76
Make sure to replace the following placeholders with your own values:
- 
consumerName|Id: Theidornameof the consumer the plugin configuration will target.
Make the following request:
curl -i -X POST http://localhost:8001/consumers/{consumerName|Id}/plugins/ \
    --header "Accept: application/json" \
    --header "Content-Type: application/json" \
    --data '
    {
      "name": "ai-rag-injector",
      "config": {
        "inject_template": "Only use the following information surrounded by <RAG></RAG>to and your existing knowledge to provide the best possible answer to the user.\n<RAG><CONTEXT></RAG>\nUser's question: <PROMPT>\n",
        "embeddings": {
          "auth": {
            "header_name": "Authorization",
            "header_value": "Bearer '$OPENAI_API_KEY'"
          },
          "model": {
            "provider": "openai",
            "name": "text-embedding-3-large"
          }
        },
        "vectordb": {
          "strategy": "redis",
          "redis": {
            "host": "'$REDIS_HOST'",
            "port": 6379
          },
          "distance_metric": "cosine",
          "dimensions": 76
        }
      },
      "tags": []
    }
    '
Make sure to replace the following placeholders with your own values:
- 
consumerName|Id: Theidornameof the consumer the plugin configuration will target.
Make the following request:
curl -X POST https://{region}.api.konghq.com/v2/control-planes/{controlPlaneId}/core-entities/consumers/{consumerId}/plugins/ \
    --header "accept: application/json" \
    --header "Content-Type: application/json" \
    --header "Authorization: Bearer $KONNECT_TOKEN" \
    --data '
    {
      "name": "ai-rag-injector",
      "config": {
        "inject_template": "Only use the following information surrounded by <RAG></RAG>to and your existing knowledge to provide the best possible answer to the user.\n<RAG><CONTEXT></RAG>\nUser's question: <PROMPT>\n",
        "embeddings": {
          "auth": {
            "header_name": "Authorization",
            "header_value": "Bearer '$OPENAI_API_KEY'"
          },
          "model": {
            "provider": "openai",
            "name": "text-embedding-3-large"
          }
        },
        "vectordb": {
          "strategy": "redis",
          "redis": {
            "host": "'$REDIS_HOST'",
            "port": 6379
          },
          "distance_metric": "cosine",
          "dimensions": 76
        }
      },
      "tags": []
    }
    '
Make sure to replace the following placeholders with your own values:
- 
    region: Geographic region where your Kong Konnect is hosted and operates.
- 
    controlPlaneId: Theidof the control plane.
- 
    KONNECT_TOKEN: Your Personal Access Token (PAT) associated with your Konnect account.
- 
    consumerId: Theidof the consumer the plugin configuration will target.
See the Konnect API reference to learn about region-specific URLs and personal access tokens.
echo "
apiVersion: configuration.konghq.com/v1
kind: KongPlugin
metadata:
  name: ai-rag-injector
  namespace: kong
  annotations:
    kubernetes.io/ingress.class: kong
    konghq.com/tags: ''
config:
  inject_template: |
    Only use the following information surrounded by <RAG></RAG>to and your existing knowledge to provide the best possible answer to the user.
    <RAG><CONTEXT></RAG>
    User's question: <PROMPT>
  embeddings:
    auth:
      header_name: Authorization
      header_value: Bearer $OPENAI_API_KEY
    model:
      provider: openai
      name: text-embedding-3-large
  vectordb:
    strategy: redis
    redis:
      host: '$REDIS_HOST'
      port: 6379
    distance_metric: cosine
    dimensions: 76
plugin: ai-rag-injector
" | kubectl apply -f -
Next, apply the KongPlugin resource by annotating the KongConsumer resource:
kubectl annotate -n kong  CONSUMER_NAME konghq.com/plugins=ai-rag-injector
Prerequisite: Configure your Personal Access Token
terraform {
  required_providers {
    konnect = {
      source  = "kong/konnect"
    }
  }
}
provider "konnect" {
  personal_access_token = "$KONNECT_TOKEN"
  server_url            = "https://us.api.konghq.com/"
}
Add the following to your Terraform configuration to create a Konnect Gateway Plugin:
resource "konnect_gateway_plugin_ai_rag_injector" "my_ai_rag_injector" {
  enabled = true
  config = {
    inject_template = <<EOF
Only use the following information surrounded by <RAG></RAG>to and your existing knowledge to provide the best possible answer to the user.
<RAG><CONTEXT></RAG>
User's question: <PROMPT>
EOF
    embeddings = {
      auth = {
        header_name = "Authorization"
        header_value = "Bearer var.openai_api_key"
      }
      model = {
        provider = "openai"
        name = "text-embedding-3-large"
      }
    }
    vectordb = {
      strategy = "redis"
      redis = {
        host = var.redis_host
        port = 6379
      }
      distance_metric = "cosine"
      dimensions = 76
    }
  }
  tags = []
  control_plane_id = konnect_gateway_control_plane.my_konnect_cp.id
  consumer = {
    id = konnect_gateway_consumer.my_consumer.id
  }
}
This example requires the following variables to be added to your manifest. You can specify values at runtime by setting TF_VAR_name=value.
variable "redis_host" {
  type = string
}
Add this section to your kong.yaml configuration file:
_format_version: "3.0"
plugins:
  - name: ai-rag-injector
    consumer_group: consumerGroupName|Id
    config:
      inject_template: |
        Only use the following information surrounded by <RAG></RAG>to and your existing knowledge to provide the best possible answer to the user.
        <RAG><CONTEXT></RAG>
        User's question: <PROMPT>
      embeddings:
        auth:
          header_name: Authorization
          header_value: Bearer ${{ env "DECK_OPENAI_API_KEY" }}
        model:
          provider: openai
          name: text-embedding-3-large
      vectordb:
        strategy: redis
        redis:
          host: ${{ env "DECK_REDIS_HOST" }}
          port: 6379
        distance_metric: cosine
        dimensions: 76
Make sure to replace the following placeholders with your own values:
- 
consumerGroupName|Id: Theidornameof the consumer group the plugin configuration will target.
Make the following request:
curl -i -X POST http://localhost:8001/consumer_groups/{consumerGroupName|Id}/plugins/ \
    --header "Accept: application/json" \
    --header "Content-Type: application/json" \
    --data '
    {
      "name": "ai-rag-injector",
      "config": {
        "inject_template": "Only use the following information surrounded by <RAG></RAG>to and your existing knowledge to provide the best possible answer to the user.\n<RAG><CONTEXT></RAG>\nUser's question: <PROMPT>\n",
        "embeddings": {
          "auth": {
            "header_name": "Authorization",
            "header_value": "Bearer '$OPENAI_API_KEY'"
          },
          "model": {
            "provider": "openai",
            "name": "text-embedding-3-large"
          }
        },
        "vectordb": {
          "strategy": "redis",
          "redis": {
            "host": "'$REDIS_HOST'",
            "port": 6379
          },
          "distance_metric": "cosine",
          "dimensions": 76
        }
      },
      "tags": []
    }
    '
Make sure to replace the following placeholders with your own values:
- 
consumerGroupName|Id: Theidornameof the consumer group the plugin configuration will target.
Make the following request:
curl -X POST https://{region}.api.konghq.com/v2/control-planes/{controlPlaneId}/core-entities/consumer_groups/{consumerGroupId}/plugins/ \
    --header "accept: application/json" \
    --header "Content-Type: application/json" \
    --header "Authorization: Bearer $KONNECT_TOKEN" \
    --data '
    {
      "name": "ai-rag-injector",
      "config": {
        "inject_template": "Only use the following information surrounded by <RAG></RAG>to and your existing knowledge to provide the best possible answer to the user.\n<RAG><CONTEXT></RAG>\nUser's question: <PROMPT>\n",
        "embeddings": {
          "auth": {
            "header_name": "Authorization",
            "header_value": "Bearer '$OPENAI_API_KEY'"
          },
          "model": {
            "provider": "openai",
            "name": "text-embedding-3-large"
          }
        },
        "vectordb": {
          "strategy": "redis",
          "redis": {
            "host": "'$REDIS_HOST'",
            "port": 6379
          },
          "distance_metric": "cosine",
          "dimensions": 76
        }
      },
      "tags": []
    }
    '
Make sure to replace the following placeholders with your own values:
- 
    region: Geographic region where your Kong Konnect is hosted and operates.
- 
    controlPlaneId: Theidof the control plane.
- 
    KONNECT_TOKEN: Your Personal Access Token (PAT) associated with your Konnect account.
- 
    consumerGroupId: Theidof the consumer group the plugin configuration will target.
See the Konnect API reference to learn about region-specific URLs and personal access tokens.
echo "
apiVersion: configuration.konghq.com/v1
kind: KongPlugin
metadata:
  name: ai-rag-injector
  namespace: kong
  annotations:
    kubernetes.io/ingress.class: kong
    konghq.com/tags: ''
config:
  inject_template: |
    Only use the following information surrounded by <RAG></RAG>to and your existing knowledge to provide the best possible answer to the user.
    <RAG><CONTEXT></RAG>
    User's question: <PROMPT>
  embeddings:
    auth:
      header_name: Authorization
      header_value: Bearer $OPENAI_API_KEY
    model:
      provider: openai
      name: text-embedding-3-large
  vectordb:
    strategy: redis
    redis:
      host: '$REDIS_HOST'
      port: 6379
    distance_metric: cosine
    dimensions: 76
plugin: ai-rag-injector
" | kubectl apply -f -
Next, apply the KongPlugin resource by annotating the KongConsumerGroup resource:
kubectl annotate -n kong  CONSUMERGROUP_NAME konghq.com/plugins=ai-rag-injector
Prerequisite: Configure your Personal Access Token
terraform {
  required_providers {
    konnect = {
      source  = "kong/konnect"
    }
  }
}
provider "konnect" {
  personal_access_token = "$KONNECT_TOKEN"
  server_url            = "https://us.api.konghq.com/"
}
Add the following to your Terraform configuration to create a Konnect Gateway Plugin:
resource "konnect_gateway_plugin_ai_rag_injector" "my_ai_rag_injector" {
  enabled = true
  config = {
    inject_template = <<EOF
Only use the following information surrounded by <RAG></RAG>to and your existing knowledge to provide the best possible answer to the user.
<RAG><CONTEXT></RAG>
User's question: <PROMPT>
EOF
    embeddings = {
      auth = {
        header_name = "Authorization"
        header_value = "Bearer var.openai_api_key"
      }
      model = {
        provider = "openai"
        name = "text-embedding-3-large"
      }
    }
    vectordb = {
      strategy = "redis"
      redis = {
        host = var.redis_host
        port = 6379
      }
      distance_metric = "cosine"
      dimensions = 76
    }
  }
  tags = []
  control_plane_id = konnect_gateway_control_plane.my_konnect_cp.id
  consumer_group = {
    id = konnect_gateway_consumer_group.my_consumer_group.id
  }
}
This example requires the following variables to be added to your manifest. You can specify values at runtime by setting TF_VAR_name=value.
variable "redis_host" {
  type = string
}
