Authenticate to Azure OpenAI Service with an Azure Managed Identityv3.8+
Configure a chat route using Azure OpenAI Service with the GPT-4o model, and authenticate using an Azure Managed Identity.
To connect to Azure AI, you’ll need three values from your Azure OpenAI resource:
- 
Deployment ID — The unique name of your deployed model.
    - In the Azure AI Foundry Portal sidebar, select a resource and go to: Shared Resources > Deployments > Model deployments and click the deployment name.
- You can also see the deployment ID in the Azure OpenAI URL when calling the API, for example:
https://{AZURE_INSTANCE_NAME}.openai.azure.com/openai/deployments/{AZURE_DEPLOYMENT_ID}/...
 
- 
Instance name — The name of your Azure OpenAI resource.
    - This is the prefix in your API endpoint URL, for example:
https://{AZURE_INSTANCE_NAME}.openai.azure.com
 
- This is the prefix in your API endpoint URL, for example:
- 
API Key — The key used to authenticate requests to your Azure OpenAI deployment in Azure AI Foundry.
    - In the Azure AI Foundry Portal sidebar, select a resource and go to: Shared Resources > Deployments > Model deployments, then click the deployment name.
- The API key is visible in the Endpoint tile.
 
Environment variables
- 
    AZURE_INSTANCE_NAME: The name of the Azure OpenAI instance.
- 
    AZURE_DEPLOYMENT_ID: The ID of the Azure OpenAI deployment.
- 
    AZURE_OPENAI_API_KEY: The API key to use to connect to Azure OpenAI.
Add this section to your kong.yaml configuration file:
_format_version: "3.0"
plugins:
  - name: ai-proxy-advanced
    config:
      targets:
      - route_type: llm/v1/chat
        auth:
          azure_use_managed_identity: true
        model:
          provider: azure
          name: gpt-4o
          options:
            azure_api_version: '2023-01-01'
            azure_instance: ${{ env "DECK_AZURE_INSTANCE_NAME" }}
            azure_deployment_id: ${{ env "DECK_AZURE_DEPLOYMENT_ID" }}
Make the following request:
curl -i -X POST http://localhost:8001/plugins/ \
    --header "Accept: application/json" \
    --header "Content-Type: application/json" \
    --data '
    {
      "name": "ai-proxy-advanced",
      "config": {
        "targets": [
          {
            "route_type": "llm/v1/chat",
            "auth": {
              "azure_use_managed_identity": true
            },
            "model": {
              "provider": "azure",
              "name": "gpt-4o",
              "options": {
                "azure_api_version": "2023-01-01",
                "azure_instance": "'$AZURE_INSTANCE_NAME'",
                "azure_deployment_id": "'$AZURE_DEPLOYMENT_ID'"
              }
            }
          }
        ]
      },
      "tags": []
    }
    '
Make the following request:
curl -X POST https://{region}.api.konghq.com/v2/control-planes/{controlPlaneId}/core-entities/plugins/ \
    --header "accept: application/json" \
    --header "Content-Type: application/json" \
    --header "Authorization: Bearer $KONNECT_TOKEN" \
    --data '
    {
      "name": "ai-proxy-advanced",
      "config": {
        "targets": [
          {
            "route_type": "llm/v1/chat",
            "auth": {
              "azure_use_managed_identity": true
            },
            "model": {
              "provider": "azure",
              "name": "gpt-4o",
              "options": {
                "azure_api_version": "2023-01-01",
                "azure_instance": "'$AZURE_INSTANCE_NAME'",
                "azure_deployment_id": "'$AZURE_DEPLOYMENT_ID'"
              }
            }
          }
        ]
      },
      "tags": []
    }
    '
Make sure to replace the following placeholders with your own values:
- 
    region: Geographic region where your Kong Konnect is hosted and operates.
- 
    controlPlaneId: Theidof the control plane.
- 
    KONNECT_TOKEN: Your Personal Access Token (PAT) associated with your Konnect account.
See the Konnect API reference to learn about region-specific URLs and personal access tokens.
echo "
apiVersion: configuration.konghq.com/v1
kind: KongClusterPlugin
metadata:
  name: ai-proxy-advanced
  namespace: kong
  annotations:
    kubernetes.io/ingress.class: kong
    konghq.com/tags: ''
  labels:
    global: 'true'
config:
  targets:
  - route_type: llm/v1/chat
    auth:
      azure_use_managed_identity: true
    model:
      provider: azure
      name: gpt-4o
      options:
        azure_api_version: '2023-01-01'
        azure_instance: '$AZURE_INSTANCE_NAME'
        azure_deployment_id: '$AZURE_DEPLOYMENT_ID'
plugin: ai-proxy-advanced
" | kubectl apply -f -
Prerequisite: Configure your Personal Access Token
terraform {
  required_providers {
    konnect = {
      source  = "kong/konnect"
    }
  }
}
provider "konnect" {
  personal_access_token = "$KONNECT_TOKEN"
  server_url            = "https://us.api.konghq.com/"
}
Add the following to your Terraform configuration to create a Konnect Gateway Plugin:
resource "konnect_gateway_plugin_ai_proxy_advanced" "my_ai_proxy_advanced" {
  enabled = true
  config = {
    targets = [
      {
        route_type = "llm/v1/chat"
        auth = {
          azure_use_managed_identity = true
        }
        model = {
          provider = "azure"
          name = "gpt-4o"
          options = {
            azure_api_version = "2023-01-01"
            azure_instance = var.azure_instance_name
            azure_deployment_id = var.azure_deployment_id
          }
        }
      }    ]
  }
  tags = []
  control_plane_id = konnect_gateway_control_plane.my_konnect_cp.id
}
This example requires the following variables to be added to your manifest. You can specify values at runtime by setting TF_VAR_name=value.
variable "azure_openai_api_key" {
  type = string
}
Add this section to your kong.yaml configuration file:
_format_version: "3.0"
plugins:
  - name: ai-proxy-advanced
    service: serviceName|Id
    config:
      targets:
      - route_type: llm/v1/chat
        auth:
          azure_use_managed_identity: true
        model:
          provider: azure
          name: gpt-4o
          options:
            azure_api_version: '2023-01-01'
            azure_instance: ${{ env "DECK_AZURE_INSTANCE_NAME" }}
            azure_deployment_id: ${{ env "DECK_AZURE_DEPLOYMENT_ID" }}
Make sure to replace the following placeholders with your own values:
- 
serviceName|Id: Theidornameof the service the plugin configuration will target.
Make the following request:
curl -i -X POST http://localhost:8001/services/{serviceName|Id}/plugins/ \
    --header "Accept: application/json" \
    --header "Content-Type: application/json" \
    --data '
    {
      "name": "ai-proxy-advanced",
      "config": {
        "targets": [
          {
            "route_type": "llm/v1/chat",
            "auth": {
              "azure_use_managed_identity": true
            },
            "model": {
              "provider": "azure",
              "name": "gpt-4o",
              "options": {
                "azure_api_version": "2023-01-01",
                "azure_instance": "'$AZURE_INSTANCE_NAME'",
                "azure_deployment_id": "'$AZURE_DEPLOYMENT_ID'"
              }
            }
          }
        ]
      },
      "tags": []
    }
    '
Make sure to replace the following placeholders with your own values:
- 
serviceName|Id: Theidornameof the service the plugin configuration will target.
Make the following request:
curl -X POST https://{region}.api.konghq.com/v2/control-planes/{controlPlaneId}/core-entities/services/{serviceId}/plugins/ \
    --header "accept: application/json" \
    --header "Content-Type: application/json" \
    --header "Authorization: Bearer $KONNECT_TOKEN" \
    --data '
    {
      "name": "ai-proxy-advanced",
      "config": {
        "targets": [
          {
            "route_type": "llm/v1/chat",
            "auth": {
              "azure_use_managed_identity": true
            },
            "model": {
              "provider": "azure",
              "name": "gpt-4o",
              "options": {
                "azure_api_version": "2023-01-01",
                "azure_instance": "'$AZURE_INSTANCE_NAME'",
                "azure_deployment_id": "'$AZURE_DEPLOYMENT_ID'"
              }
            }
          }
        ]
      },
      "tags": []
    }
    '
Make sure to replace the following placeholders with your own values:
- 
    region: Geographic region where your Kong Konnect is hosted and operates.
- 
    controlPlaneId: Theidof the control plane.
- 
    KONNECT_TOKEN: Your Personal Access Token (PAT) associated with your Konnect account.
- 
    serviceId: Theidof the service the plugin configuration will target.
See the Konnect API reference to learn about region-specific URLs and personal access tokens.
echo "
apiVersion: configuration.konghq.com/v1
kind: KongPlugin
metadata:
  name: ai-proxy-advanced
  namespace: kong
  annotations:
    kubernetes.io/ingress.class: kong
    konghq.com/tags: ''
config:
  targets:
  - route_type: llm/v1/chat
    auth:
      azure_use_managed_identity: true
    model:
      provider: azure
      name: gpt-4o
      options:
        azure_api_version: '2023-01-01'
        azure_instance: '$AZURE_INSTANCE_NAME'
        azure_deployment_id: '$AZURE_DEPLOYMENT_ID'
plugin: ai-proxy-advanced
" | kubectl apply -f -
Next, apply the KongPlugin resource by annotating the service resource:
kubectl annotate -n kong service SERVICE_NAME konghq.com/plugins=ai-proxy-advanced
Prerequisite: Configure your Personal Access Token
terraform {
  required_providers {
    konnect = {
      source  = "kong/konnect"
    }
  }
}
provider "konnect" {
  personal_access_token = "$KONNECT_TOKEN"
  server_url            = "https://us.api.konghq.com/"
}
Add the following to your Terraform configuration to create a Konnect Gateway Plugin:
resource "konnect_gateway_plugin_ai_proxy_advanced" "my_ai_proxy_advanced" {
  enabled = true
  config = {
    targets = [
      {
        route_type = "llm/v1/chat"
        auth = {
          azure_use_managed_identity = true
        }
        model = {
          provider = "azure"
          name = "gpt-4o"
          options = {
            azure_api_version = "2023-01-01"
            azure_instance = var.azure_instance_name
            azure_deployment_id = var.azure_deployment_id
          }
        }
      }    ]
  }
  tags = []
  control_plane_id = konnect_gateway_control_plane.my_konnect_cp.id
  service = {
    id = konnect_gateway_service.my_service.id
  }
}
This example requires the following variables to be added to your manifest. You can specify values at runtime by setting TF_VAR_name=value.
variable "azure_openai_api_key" {
  type = string
}
Add this section to your kong.yaml configuration file:
_format_version: "3.0"
plugins:
  - name: ai-proxy-advanced
    route: routeName|Id
    config:
      targets:
      - route_type: llm/v1/chat
        auth:
          azure_use_managed_identity: true
        model:
          provider: azure
          name: gpt-4o
          options:
            azure_api_version: '2023-01-01'
            azure_instance: ${{ env "DECK_AZURE_INSTANCE_NAME" }}
            azure_deployment_id: ${{ env "DECK_AZURE_DEPLOYMENT_ID" }}
Make sure to replace the following placeholders with your own values:
- 
routeName|Id: Theidornameof the route the plugin configuration will target.
Make the following request:
curl -i -X POST http://localhost:8001/routes/{routeName|Id}/plugins/ \
    --header "Accept: application/json" \
    --header "Content-Type: application/json" \
    --data '
    {
      "name": "ai-proxy-advanced",
      "config": {
        "targets": [
          {
            "route_type": "llm/v1/chat",
            "auth": {
              "azure_use_managed_identity": true
            },
            "model": {
              "provider": "azure",
              "name": "gpt-4o",
              "options": {
                "azure_api_version": "2023-01-01",
                "azure_instance": "'$AZURE_INSTANCE_NAME'",
                "azure_deployment_id": "'$AZURE_DEPLOYMENT_ID'"
              }
            }
          }
        ]
      },
      "tags": []
    }
    '
Make sure to replace the following placeholders with your own values:
- 
routeName|Id: Theidornameof the route the plugin configuration will target.
Make the following request:
curl -X POST https://{region}.api.konghq.com/v2/control-planes/{controlPlaneId}/core-entities/routes/{routeId}/plugins/ \
    --header "accept: application/json" \
    --header "Content-Type: application/json" \
    --header "Authorization: Bearer $KONNECT_TOKEN" \
    --data '
    {
      "name": "ai-proxy-advanced",
      "config": {
        "targets": [
          {
            "route_type": "llm/v1/chat",
            "auth": {
              "azure_use_managed_identity": true
            },
            "model": {
              "provider": "azure",
              "name": "gpt-4o",
              "options": {
                "azure_api_version": "2023-01-01",
                "azure_instance": "'$AZURE_INSTANCE_NAME'",
                "azure_deployment_id": "'$AZURE_DEPLOYMENT_ID'"
              }
            }
          }
        ]
      },
      "tags": []
    }
    '
Make sure to replace the following placeholders with your own values:
- 
    region: Geographic region where your Kong Konnect is hosted and operates.
- 
    controlPlaneId: Theidof the control plane.
- 
    KONNECT_TOKEN: Your Personal Access Token (PAT) associated with your Konnect account.
- 
    routeId: Theidof the route the plugin configuration will target.
See the Konnect API reference to learn about region-specific URLs and personal access tokens.
echo "
apiVersion: configuration.konghq.com/v1
kind: KongPlugin
metadata:
  name: ai-proxy-advanced
  namespace: kong
  annotations:
    kubernetes.io/ingress.class: kong
    konghq.com/tags: ''
config:
  targets:
  - route_type: llm/v1/chat
    auth:
      azure_use_managed_identity: true
    model:
      provider: azure
      name: gpt-4o
      options:
        azure_api_version: '2023-01-01'
        azure_instance: '$AZURE_INSTANCE_NAME'
        azure_deployment_id: '$AZURE_DEPLOYMENT_ID'
plugin: ai-proxy-advanced
" | kubectl apply -f -
Next, apply the KongPlugin resource by annotating the httproute or ingress resource:
kubectl annotate -n kong httproute  konghq.com/plugins=ai-proxy-advanced
kubectl annotate -n kong ingress  konghq.com/plugins=ai-proxy-advanced
Prerequisite: Configure your Personal Access Token
terraform {
  required_providers {
    konnect = {
      source  = "kong/konnect"
    }
  }
}
provider "konnect" {
  personal_access_token = "$KONNECT_TOKEN"
  server_url            = "https://us.api.konghq.com/"
}
Add the following to your Terraform configuration to create a Konnect Gateway Plugin:
resource "konnect_gateway_plugin_ai_proxy_advanced" "my_ai_proxy_advanced" {
  enabled = true
  config = {
    targets = [
      {
        route_type = "llm/v1/chat"
        auth = {
          azure_use_managed_identity = true
        }
        model = {
          provider = "azure"
          name = "gpt-4o"
          options = {
            azure_api_version = "2023-01-01"
            azure_instance = var.azure_instance_name
            azure_deployment_id = var.azure_deployment_id
          }
        }
      }    ]
  }
  tags = []
  control_plane_id = konnect_gateway_control_plane.my_konnect_cp.id
  route = {
    id = konnect_gateway_route.my_route.id
  }
}
This example requires the following variables to be added to your manifest. You can specify values at runtime by setting TF_VAR_name=value.
variable "azure_openai_api_key" {
  type = string
}
Add this section to your kong.yaml configuration file:
_format_version: "3.0"
plugins:
  - name: ai-proxy-advanced
    consumer: consumerName|Id
    config:
      targets:
      - route_type: llm/v1/chat
        auth:
          azure_use_managed_identity: true
        model:
          provider: azure
          name: gpt-4o
          options:
            azure_api_version: '2023-01-01'
            azure_instance: ${{ env "DECK_AZURE_INSTANCE_NAME" }}
            azure_deployment_id: ${{ env "DECK_AZURE_DEPLOYMENT_ID" }}
Make sure to replace the following placeholders with your own values:
- 
consumerName|Id: Theidornameof the consumer the plugin configuration will target.
Make the following request:
curl -i -X POST http://localhost:8001/consumers/{consumerName|Id}/plugins/ \
    --header "Accept: application/json" \
    --header "Content-Type: application/json" \
    --data '
    {
      "name": "ai-proxy-advanced",
      "config": {
        "targets": [
          {
            "route_type": "llm/v1/chat",
            "auth": {
              "azure_use_managed_identity": true
            },
            "model": {
              "provider": "azure",
              "name": "gpt-4o",
              "options": {
                "azure_api_version": "2023-01-01",
                "azure_instance": "'$AZURE_INSTANCE_NAME'",
                "azure_deployment_id": "'$AZURE_DEPLOYMENT_ID'"
              }
            }
          }
        ]
      },
      "tags": []
    }
    '
Make sure to replace the following placeholders with your own values:
- 
consumerName|Id: Theidornameof the consumer the plugin configuration will target.
Make the following request:
curl -X POST https://{region}.api.konghq.com/v2/control-planes/{controlPlaneId}/core-entities/consumers/{consumerId}/plugins/ \
    --header "accept: application/json" \
    --header "Content-Type: application/json" \
    --header "Authorization: Bearer $KONNECT_TOKEN" \
    --data '
    {
      "name": "ai-proxy-advanced",
      "config": {
        "targets": [
          {
            "route_type": "llm/v1/chat",
            "auth": {
              "azure_use_managed_identity": true
            },
            "model": {
              "provider": "azure",
              "name": "gpt-4o",
              "options": {
                "azure_api_version": "2023-01-01",
                "azure_instance": "'$AZURE_INSTANCE_NAME'",
                "azure_deployment_id": "'$AZURE_DEPLOYMENT_ID'"
              }
            }
          }
        ]
      },
      "tags": []
    }
    '
Make sure to replace the following placeholders with your own values:
- 
    region: Geographic region where your Kong Konnect is hosted and operates.
- 
    controlPlaneId: Theidof the control plane.
- 
    KONNECT_TOKEN: Your Personal Access Token (PAT) associated with your Konnect account.
- 
    consumerId: Theidof the consumer the plugin configuration will target.
See the Konnect API reference to learn about region-specific URLs and personal access tokens.
echo "
apiVersion: configuration.konghq.com/v1
kind: KongPlugin
metadata:
  name: ai-proxy-advanced
  namespace: kong
  annotations:
    kubernetes.io/ingress.class: kong
    konghq.com/tags: ''
config:
  targets:
  - route_type: llm/v1/chat
    auth:
      azure_use_managed_identity: true
    model:
      provider: azure
      name: gpt-4o
      options:
        azure_api_version: '2023-01-01'
        azure_instance: '$AZURE_INSTANCE_NAME'
        azure_deployment_id: '$AZURE_DEPLOYMENT_ID'
plugin: ai-proxy-advanced
" | kubectl apply -f -
Next, apply the KongPlugin resource by annotating the KongConsumer resource:
kubectl annotate -n kong  CONSUMER_NAME konghq.com/plugins=ai-proxy-advanced
Prerequisite: Configure your Personal Access Token
terraform {
  required_providers {
    konnect = {
      source  = "kong/konnect"
    }
  }
}
provider "konnect" {
  personal_access_token = "$KONNECT_TOKEN"
  server_url            = "https://us.api.konghq.com/"
}
Add the following to your Terraform configuration to create a Konnect Gateway Plugin:
resource "konnect_gateway_plugin_ai_proxy_advanced" "my_ai_proxy_advanced" {
  enabled = true
  config = {
    targets = [
      {
        route_type = "llm/v1/chat"
        auth = {
          azure_use_managed_identity = true
        }
        model = {
          provider = "azure"
          name = "gpt-4o"
          options = {
            azure_api_version = "2023-01-01"
            azure_instance = var.azure_instance_name
            azure_deployment_id = var.azure_deployment_id
          }
        }
      }    ]
  }
  tags = []
  control_plane_id = konnect_gateway_control_plane.my_konnect_cp.id
  consumer = {
    id = konnect_gateway_consumer.my_consumer.id
  }
}
This example requires the following variables to be added to your manifest. You can specify values at runtime by setting TF_VAR_name=value.
variable "azure_openai_api_key" {
  type = string
}
Add this section to your kong.yaml configuration file:
_format_version: "3.0"
plugins:
  - name: ai-proxy-advanced
    consumer_group: consumerGroupName|Id
    config:
      targets:
      - route_type: llm/v1/chat
        auth:
          azure_use_managed_identity: true
        model:
          provider: azure
          name: gpt-4o
          options:
            azure_api_version: '2023-01-01'
            azure_instance: ${{ env "DECK_AZURE_INSTANCE_NAME" }}
            azure_deployment_id: ${{ env "DECK_AZURE_DEPLOYMENT_ID" }}
Make sure to replace the following placeholders with your own values:
- 
consumerGroupName|Id: Theidornameof the consumer group the plugin configuration will target.
Make the following request:
curl -i -X POST http://localhost:8001/consumer_groups/{consumerGroupName|Id}/plugins/ \
    --header "Accept: application/json" \
    --header "Content-Type: application/json" \
    --data '
    {
      "name": "ai-proxy-advanced",
      "config": {
        "targets": [
          {
            "route_type": "llm/v1/chat",
            "auth": {
              "azure_use_managed_identity": true
            },
            "model": {
              "provider": "azure",
              "name": "gpt-4o",
              "options": {
                "azure_api_version": "2023-01-01",
                "azure_instance": "'$AZURE_INSTANCE_NAME'",
                "azure_deployment_id": "'$AZURE_DEPLOYMENT_ID'"
              }
            }
          }
        ]
      },
      "tags": []
    }
    '
Make sure to replace the following placeholders with your own values:
- 
consumerGroupName|Id: Theidornameof the consumer group the plugin configuration will target.
Make the following request:
curl -X POST https://{region}.api.konghq.com/v2/control-planes/{controlPlaneId}/core-entities/consumer_groups/{consumerGroupId}/plugins/ \
    --header "accept: application/json" \
    --header "Content-Type: application/json" \
    --header "Authorization: Bearer $KONNECT_TOKEN" \
    --data '
    {
      "name": "ai-proxy-advanced",
      "config": {
        "targets": [
          {
            "route_type": "llm/v1/chat",
            "auth": {
              "azure_use_managed_identity": true
            },
            "model": {
              "provider": "azure",
              "name": "gpt-4o",
              "options": {
                "azure_api_version": "2023-01-01",
                "azure_instance": "'$AZURE_INSTANCE_NAME'",
                "azure_deployment_id": "'$AZURE_DEPLOYMENT_ID'"
              }
            }
          }
        ]
      },
      "tags": []
    }
    '
Make sure to replace the following placeholders with your own values:
- 
    region: Geographic region where your Kong Konnect is hosted and operates.
- 
    controlPlaneId: Theidof the control plane.
- 
    KONNECT_TOKEN: Your Personal Access Token (PAT) associated with your Konnect account.
- 
    consumerGroupId: Theidof the consumer group the plugin configuration will target.
See the Konnect API reference to learn about region-specific URLs and personal access tokens.
echo "
apiVersion: configuration.konghq.com/v1
kind: KongPlugin
metadata:
  name: ai-proxy-advanced
  namespace: kong
  annotations:
    kubernetes.io/ingress.class: kong
    konghq.com/tags: ''
config:
  targets:
  - route_type: llm/v1/chat
    auth:
      azure_use_managed_identity: true
    model:
      provider: azure
      name: gpt-4o
      options:
        azure_api_version: '2023-01-01'
        azure_instance: '$AZURE_INSTANCE_NAME'
        azure_deployment_id: '$AZURE_DEPLOYMENT_ID'
plugin: ai-proxy-advanced
" | kubectl apply -f -
Next, apply the KongPlugin resource by annotating the KongConsumerGroup resource:
kubectl annotate -n kong  CONSUMERGROUP_NAME konghq.com/plugins=ai-proxy-advanced
Prerequisite: Configure your Personal Access Token
terraform {
  required_providers {
    konnect = {
      source  = "kong/konnect"
    }
  }
}
provider "konnect" {
  personal_access_token = "$KONNECT_TOKEN"
  server_url            = "https://us.api.konghq.com/"
}
Add the following to your Terraform configuration to create a Konnect Gateway Plugin:
resource "konnect_gateway_plugin_ai_proxy_advanced" "my_ai_proxy_advanced" {
  enabled = true
  config = {
    targets = [
      {
        route_type = "llm/v1/chat"
        auth = {
          azure_use_managed_identity = true
        }
        model = {
          provider = "azure"
          name = "gpt-4o"
          options = {
            azure_api_version = "2023-01-01"
            azure_instance = var.azure_instance_name
            azure_deployment_id = var.azure_deployment_id
          }
        }
      }    ]
  }
  tags = []
  control_plane_id = konnect_gateway_control_plane.my_konnect_cp.id
  consumer_group = {
    id = konnect_gateway_consumer_group.my_consumer_group.id
  }
}
This example requires the following variables to be added to your manifest. You can specify values at runtime by setting TF_VAR_name=value.
variable "azure_openai_api_key" {
  type = string
}
