Use Google Generative AI SDK for Vertex AI service chats with Kong AI Gateway
Configure the AI Proxy Advanced plugin with llm_format set to gemini, then send requests using Vertex AI’s native API format with the contents array structure.
Prerequisites
Kong Konnect
This is a Konnect tutorial and requires a Konnect personal access token.
-
Create a new personal access token by opening the Konnect PAT page and selecting Generate Token.
-
Export your token to an environment variable:
export KONNECT_TOKEN='YOUR_KONNECT_PAT'Copied! -
Run the quickstart script to automatically provision a Control Plane and Data Plane, and configure your environment:
curl -Ls https://get.konghq.com/quickstart | bash -s -- -k $KONNECT_TOKEN --deck-outputCopied!This sets up a Konnect Control Plane named
quickstart, provisions a local Data Plane, and prints out the following environment variable exports:export DECK_KONNECT_TOKEN=$KONNECT_TOKEN export DECK_KONNECT_CONTROL_PLANE_NAME=quickstart export KONNECT_CONTROL_PLANE_URL=https://us.api.konghq.com export KONNECT_PROXY_URL='http://localhost:8000'Copied!Copy and paste these into your terminal to configure your session.
Kong Gateway running
This tutorial requires Kong Gateway Enterprise. If you don’t have Kong Gateway set up yet, you can use the quickstart script with an enterprise license to get an instance of Kong Gateway running almost instantly.
-
Export your license to an environment variable:
export KONG_LICENSE_DATA='LICENSE-CONTENTS-GO-HERE'Copied! -
Run the quickstart script:
curl -Ls https://get.konghq.com/quickstart | bash -s -- -e KONG_LICENSE_DATACopied!Once Kong Gateway is ready, you will see the following message:
Kong Gateway Ready
decK v1.43+
decK is a CLI tool for managing Kong Gateway declaratively with state files. To complete this tutorial, install decK version 1.43 or later.
This guide uses deck gateway apply, which directly applies entity configuration to your Gateway instance.
We recommend upgrading your decK installation to take advantage of this tool.
You can check your current decK version with deck version.
Required entities
For this tutorial, you’ll need Kong Gateway entities, like Gateway Services and Routes, pre-configured. These entities are essential for Kong Gateway to function but installing them isn’t the focus of this guide. Follow these steps to pre-configure them:
-
Run the following command:
echo ' _format_version: "3.0" services: - name: gemini-service url: http://httpbin.konghq.com/ routes: - name: gemini-route paths: - "/gemini" service: name: gemini-service ' | deck gateway apply -Copied!
To learn more about entities, you can read our entities documentation.
Vertex AI
Before you begin, you must get the following credentials from Google Cloud:
- Service Account Key: A JSON key file for a service account with Vertex AI permissions
- Project ID: Your Google Cloud project identifier
- Location ID: Your Google Cloud project location identifier
-
API Endpoint: The global Vertex AI API endpoint
https://aiplatform.googleapis.com
After creating the key, convert the contents of modelarmor-admin-key.json into a single-line JSON string.
Escape all necessary characters. Quotes (") become \" and newlines become \n. The result must be a valid one-line JSON string.
Then export your credentials as environment variables:
export DECK_GCP_SERVICE_ACCOUNT_JSON="<single-line-escaped-json>"
export DECK_GCP_LOCATION_ID="<your_location_id>"
export DECK_GCP_API_ENDPOINT="<your_gcp_api_endpoint>"
export DECK_GCP_PROJECT_ID="<your-gcp-project-id>"
Set up GCP Application Default Credentials (ADC) with your quota project:
gcloud auth application-default set-quota-project <your_gcp_project_id>
Replace <your_gcp_project_id> with your actual project ID. This configures ADC to use your project for API quota and billing.
Python
To complete this tutorial, you’ll need Python (version 3.7 or later) and pip installed on your machine. You can verify it by running:
python3
python3 -m pip --version
-
Create a virtual env:
python3 -m venv myenvCopied! -
Activate it:
source myenv/bin/activateCopied!
Google Generative AI SDK
Install the Google Generative AI SDK:
pip install google-generativeai
Configure the AI Proxy Advanced plugin
The AI Proxy Advanced plugin supports Google’s Vertex AI models with service account authentication. This configuration allows you to route requests in Vertex AI’s native format through Kong AI Gateway. The plugin handles authentication with GCP, manages the connection to Vertex AI endpoints, and proxies requests without modifying the Gemini-specific request structure.
Apply the plugin configuration with your GCP service account credentials:
echo '
_format_version: "3.0"
plugins:
- name: ai-proxy-advanced
service: gemini-service
config:
llm_format: gemini
genai_category: text/generation
targets:
- route_type: llm/v1/chat
logging:
log_payloads: false
log_statistics: true
model:
provider: gemini
name: gemini-2.0-flash-exp
options:
gemini:
api_endpoint: "${{ env "DECK_GCP_API_ENDPOINT" }}"
project_id: "${{ env "DECK_GCP_PROJECT_ID" }}"
location_id: "${{ env "DECK_GCP_LOCATION_ID" }}"
auth:
allow_override: false
gcp_use_service_account: true
gcp_service_account_json: "${{ env "DECK_GCP_SERVICE_ACCOUNT_JSON" }}"
' | deck gateway apply -
Create Python script
Create a test script that sends a request using Vertex AI’s native API format. The script constructs the Vertex AI endpoint URL with your project ID and location, then sends a properly formatted request:
cat << 'EOF' > vertex.py
#!/usr/bin/env python3
import os
from google import genai
import sys
import time
import threading
def spinner():
chars = ['⠋', '⠙', '⠹', '⠸', '⠼', '⠴', '⠦', '⠧', '⠇', '⠏']
idx = 0
while not stop_spinner:
sys.stdout.write(f'\r{chars[idx % len(chars)]} Generating response...')
sys.stdout.flush()
idx += 1
time.sleep(0.1)
sys.stdout.write('\r' + ' ' * 30 + '\r')
sys.stdout.flush()
client = genai.Client(
vertexai=True,
project=os.environ.get("DECK_GCP_PROJECT_ID", "gcp-sdet-test"),
location=os.environ.get("DECK_GCP_LOCATION_ID", "us-central1"),
http_options={
"base_url": "http://localhost:8000/gemini"
}
)
stop_spinner = False
spinner_thread = threading.Thread(target=spinner)
spinner_thread.start()
try:
response = client.models.generate_content(
model="gemini-2.0-flash-exp",
contents="Hello! Say hello back to me!"
)
stop_spinner = True
spinner_thread.join()
print(f"Model: {response.model_version}")
print(response.text)
except Exception as e:
stop_spinner = True
spinner_thread.join()
print(f"Error: {e}")
EOF
Validate the configuration
Now, let’s run the script we created in the previous step:
python3 vertex.py
Expected output:
Hello there!
Cleanup
Clean up Konnect environment
If you created a new control plane and want to conserve your free trial credits or avoid unnecessary charges, delete the new control plane used in this tutorial.
Destroy the Kong Gateway container
curl -Ls https://get.konghq.com/quickstart | bash -s -- -d